Experiments using transmutation set-ups

Speaker : Wolfram Westmeier for E&T RAW Collaboration

Participants of collaboration are JINR members or they have Agreements :

Russia, Germany, Armenia, Australia, Belarus, Bulgaria, China, Czech Republic, France, Greece, India, Khazakstan, Moldova, Mongolia, Poland, Serbia, Ukraine

Transmutation Studies

What is transmutation?

²³⁸⁻²⁴⁴ Pu, ^{236, 237} Np

²⁴¹⁻²⁴³ Am, ²⁴²⁻²⁴⁸ Cm

Conversion of long-lived nuclides into short-lived species via

 (n, γ) or (n, fission) reactions

Why is transmutation an important theme?

The ultimate goal is to get rid of highly radiotoxic long-lived nuclear waste such as

Fission products

¹²⁹I, ¹³⁵Cs, ⁹⁹Tc, ⁹³Zr,

¹⁰⁷Pd, ⁹³Mo

Transmutation Studies

TRUs

Transmutation Studies

It is unquestionably true that at tolerable risks

- ecological
- environmental
- financial
- health
- safety & security

only nuclear power can support mankind in the future.

But : Nuclear waste problem must be solved

Transmutation Studies

4

Favourite : dual strata concept

PARTRA Cluster meeting, Feb.25-26, 2008, Karlsruhe

Source: M. Touron, CEA, France

Four major technological units :

Generation IV reactor (FBR)*

Element separation (Partitioning)

Transmutation

Accelerator

* NO proliferation

Transmutation Studies

Key properties :

- Generation IV reactor \equiv **no proliferation**

- Generation IV reactor
 - + \equiv no long-lived waste
 - Transmutation

- With modern technology = no safety risk

Let us focus on Transmutation

Effective and economical systems will have:

- Particle Energy 0.5 GeV $\leq E_p \leq 3$ GeV
- Particle beam 5 mA \leq Ip \leq 50 mA
- Heavy element spallation/fission target
- Maybe moderated neutrons
- **1)** There are many variables
- 2) There is a lot of energy (heat)
- **3)** There is a lot of radioactivity
- 4) There is not much time

The development task is huge

Most details must be model-calculated on the basis of correct integral reference (=benchmark) data

These data are missing

Our Collaboration measures them

Transmutation Studies

Transmutation Studies

Transmutation Studies

GAMMA-2 target characteristics:

very small and simple

- 20 cm or 50 cm long Pb-core
- very symmetric (good for modelling)
- low- and high-energy neutron spectrum
 - available with Pb-, Cu- and Pb/U-core

GAMMA-3: Graphite block 110 cm * 110 cm * 60 cm with several through holes

Center hole holds the 60 cm long Pb-target

Transmutation Studies

GAMMA-3 target characteristics:

medium size and simple

- 60 cm long Pb-core, 0.7 m³ graphite
- very symmetric (good for modelling)
- low- and high-energy neutron spectrum
 - very many experimental positions inside

Transmutation Studies

E + **T** target characteristics:

medium size and simple

- 50 cm long Pb-core, U n-enhancer
- biological (neutron) shield
- high-energy neutron spectrum

with epitermal neutrons from shield

many experimental positions inside

«Quinta» target : ~300 kg of ^{nat}U in 3 segments

Transmutation Studies

Quinta target characteristics:

medium size

- U spallation target and U n-enhancer
- symmetric (good for modelling)
- high-energy neutron spectrum
- very many experimental positions outside
- simulate Pu-buildup and equilibrium

"EZHIK" target : 3000 kg of Pb- or U-target

Transmutation Studies

EZHIK target characteristics:

very large size

- Pb spallation target
- U spallation target and U n-enhancer
- not symmetric (difficult for modelling)
- high-energy neutron spectrum
 - very many experimental positions
 - simulate Pu-buildup and equilibrium

Summary (9/2010):

84 scientists from 23 groups in the Collaboration, working for more than 10 years

15 countries wordwide contributing

6 different targets3 IAEA benchmark targets

Over 10 peer-reviewed papers every year

Objective:

- measure neutron spectra & integral cross-sections

Thank you

Transmutation Studies